quadrature of the circle - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

quadrature of the circle - translation to ρωσικά

GEOMETRIC PROBLEM
Quadrature of the circle; Square the circle; Squaring a circle; Circle Squaring; Circle-squaring; Squaring of the circle; Circle-squarer; Squaring the Circle; Circle squaring; Quadrature of the Circle
  • ''[[Vitruvian Man]]''
  • Heisel's 1934 book
  • ABC}} (found by [[Hippocrates of Chios]]).
  • Squaring the circle: the areas of this square and this circle are both equal to <math>\pi</math>. In 1882, it was proven that this figure cannot be constructed in a finite number of steps with an idealized [[compass and straightedge]].

quadrature of the circle         
квадратура круга
squaring the circle         

общая лексика

квадратура круга

squaring the circle         
квадратура круга

Ορισμός

БИБЛИОТЕКА КОНГРЕССА
национальная библиотека США, в Вашингтоне. Основана в 1800. В 1993 св. 86 млн. ед. хр., фонд почти универсален (кроме иностранной, сельскохозяйственной и медицинской литературы). Редкие американские издания, коллекции инкунабул, китайской, японской и других литерар; собрание русских изданий (св. 300 тыс. названий, в т. ч. библиотека Г. Юдина). Ведет информационное обслуживание конгресса США, специалистов и других читателей.

Βικιπαίδεια

Squaring the circle

Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of lines and circles implied the existence of such a square.

In 1882, the task was proven to be impossible, as a consequence of the Lindemann–Weierstrass theorem, which proves that pi ( π {\displaystyle \pi } ) is a transcendental number. That is, π {\displaystyle \pi } is not the root of any polynomial with rational coefficients. It had been known for decades that the construction would be impossible if π {\displaystyle \pi } were transcendental, but that fact was not proven until 1882. Approximate constructions with any given non-perfect accuracy exist, and many such constructions have been found.

Despite the proof that it is impossible, attempts to square the circle have been common in pseudomathematics (i.e. the work of mathematical cranks). The expression "squaring the circle" is sometimes used as a metaphor for trying to do the impossible. The term quadrature of the circle is sometimes used as a synonym for squaring the circle, but it may also refer to approximate or numerical methods for finding the area of a circle.

Μετάφραση του &#39quadrature of the circle&#39 σε Ρωσικά